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We investigate the interplay of recurrence and noise in neural networks trained to categorize spatial patterns
of neural activity. We develop the following procedure to demonstrate how, in the presence of noise, the
introduction of recurrence permits to significantly extend and homogenize the operating range of a feed-
forward neural network. We first train a two-level perceptron in the absence of noise. Following training, we
identify the input and output units of the feed-forward network, and thus convert it into a two-layer recurrent
network. We show that the performance of the reconnected network has features reminiscent of nondynamic
stochastic resonance: the addition of noise enables the network to correctly categorize stimuli of subthreshold
strength, with optimal noise magnitude significantly exceeding the stimulus strength. We characterize the
dynamics leading to this effect and contrast it to the behavior of a more simple associative memory network in
which noise-mediated categorization fails.
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I. INTRODUCTION

The role of noise in neural processing has received sig-
nificant attention in recent years, particularly in the context
of stochastic resonancesSRd f1–3g. In the SR mechanism,
noise is used in a counterintuitive way to permit detection of
subthreshold signals of a particular frequency by a threshold-
ing neuronsTNd. Recently, such noise-driven frequency de-
tection was demonstrated also in a network of TN’sf4g.

In the case of SR, information is encoded in the temporal
structure of the stimulus. This is in contrast to “spatial” en-
coding, in which the stimulus is mapped into the pattern of
activity across a set of neurons at a specific time. As opposed
to the case of frequency-encoding systems, the beneficial
role of noise in spatially encoding systems has not been
modeled extensively. The previous studiesf5g have concen-
trated on the case of recurrent networks and of weak stimuli
that are periodic or constant in time.

In this article, we contrast the cases of feed-forward and
recurrent networks performing categorization of transient
spatially encoded stimuli. We first train a feed-forward net-
work to recognize a set of Gaussian-distributed profiles of
unit strength. We then evaluate the performance of the net-
work for stimuli of arbitrary strength and in the presence of
noise. For stimuli below a certain strength, the feed-forward
network fails to classify correctly, independently of the mag-
nitude of noise. To obtain enhancement of performance by
noise, we reconnect the feed-forward network into a recur-
rent networksFig. 1d. We present the stimulus at the initial
time step and let the network evolve to its attractor state
before the performance is evaluated. The recurrently recon-
nected networksRNNd has a high success rate of classifica-
tion of subthreshold stimuli provided that noise of suitable
magnitude is added during the network dynamics. The opti-
mal noise magnitude is several times higher than the stimu-

lus magnitude, in a manner reminiscent of SR or noise dith-
eringf6,7g. The performance of the network thus provides an
example of noise-mediated signal processing in a spatially
extended system. To investigate how general our findings
are, we also discuss a Hopfield network that performs a simi-
lar classification task, but fails to benefit from noise. We give
an intuitive understanding of the difference between the two
cases based on the attractor structure of the networks.

II. MODEL OF CATEGORIZING NETWORK

We use a standard three-layer feedforward neural network
sNNd to model the task of spatial categorization. The map-
ping of the N inputs hxi ; i =1,2, . . . ,Nj to the N outputs
hFk;k=1,2, . . . ,Nj as mediated byJ hidden nodes per input
is defined by the expression

*Electronic address: chris@mpipks-dresden.mpg.de
†Electronic address: martinz@mpipks-dresden.mpg.de

FIG. 1. Network architecture. sad Three-layer fully connected
feed-forward network wheref Isxd=x, fHsxd=1.7159 tanhs2x/3d,
and f0sxd=1/f1+exps−xdg. sbd The collapsed two-layer recurent
network, now with each node acting as a thresholding neuron.
The thresholding function is chosen to befsxd= f I(f0sxd)=1/f1
+exps−xdg for the input layer and remains fHsxd
=1.7159 tanhs2x/3d for the hidden layer.
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Fk = f0So
j=1

J

Yjkv jkD, Yjk = fHSo
i=1

N

fIsxidwijkD , s1d

wherehwijkj andhv jkj are the weights that are fixed using the
standard gradient-descent methodssee Appendix Ad. The
hidden sfHd and outputsf0d nodes have thresholded activa-
tion functions while the inputsf Id nodes have linear activa-
tion functions.

During training, we feed inputs of form

xk = SexpS− fk − Xg2

2s
DY spsd1/2,

i.e., Gaussian profiles with strengthsSd, meansXd, and vari-
ancessd. Learning was achieved by updating the weights so
that these inputs are mapped into one of the three desired
memory statessC1,C2,C3d. These were chosen to be
Gaussian profiles with identical strength and variancesS
=1,s=2d but varying meansX1=7,X2=13,X3=19d.

Spatial information is assumed to be contained in the
mean of the input statext=0. The state to evolve to among the
Ci is therefore chosen to be the one with the closest mean or
the Ci with smallerXi in the special case of equal distance.

The set of training states was defined by the following
123106 possible parameter combinations:Xi −2øXt=0øXi

+2 swith step size DXt=0=2.0310−3d, 0.5øst=0ø3.5
sDst=0=1.5310−3d, andSt=0=1.0. The input states withXt=0

equal to one of the desired meansXi will be referred to as
states with “correct” mean.

After training,hv jkj are then rewired to the input nodes as
depicted in Fig. 1sbd. The resulting recurrently RNN is now
composed ofNs1+Jd purely thresholding TN’s. The RNN is
initiated with an input profilext=0 and then evolves recur-
rently, with outputFt at stept becoming the inputxt+1 at step
t+1. Note that the state of the RNN after one iteration,xt=1,
is equivalent to the output of the corresponding nonrecurrent
network fnon-RNN, Fig. 1sadg. Throughout the discussion,
we use a network withN=25 input neurons and 3N hidden
neuronsf8g.

The results discussed belowsi.e., noise-mediated catego-
rization and uniformity of success rated are obtained also in
the network in which the thresholding functionsf and fH are
both chosen to be 1/f1+exps−xdg or 1.7159 tanhs2x/3d
f10g. The “mixed” choice f =1/f1+exps−xdg and fH

=1.7159 tanhs2x/3d results in fast convergence during train-
ing and directly corresponds to the standard implementation
of the two-layer perceptronf10,11g.

III. RESULTS AND DISCUSSION

The similarity of xt to the target stateCi was evaluated
using Linfoot‘s measures of structural contentsCd, fidelity
sFd, and correlation qualitysQd f12g. C provides a measure
of relative sharpness of the two states,F measures their gen-
eral similarity and is just the mean square error subtracted
from 1, andQ quantifies the alignment of their peaks. The
two states are identical whenC=F=Q=1. In the following,
we declare that the current state of the network matches a

given target state whenC, F, and Q are within 5% of 1
sunder such a conditionCi is visually indistinguishable from
xtd.

To evaluate convergence to a target state in the case of the
RNN, C, F, andQ are measured in 80 successive time steps
sTCFQ=80, from t=921 to t=1000d. We consider conver-
gence to be complete only if the matching criterion is satis-
fied at each time step in this range. The extension toTCFQ
.1 assures that the recovery measure is robust against tran-
sientsstemporary trappings in the target stated in the pres-
ence of noise. For the non-RNN case,TCFQ=1 as conver-
gence is evaluated atxt=1.

A. Network in the absence of noise

Following 105 epochs of trainingf14g, the nonrecurrent
network can categorize perfectly the 123106 possible in-
puts. Generalization by interpolation of resolutions smaller
than the training resolutions is achieved perfectly within the
training range. Furthermore, extrapolation to include the
ranges 0.6,St=0,2 andst=0,60 is also attainedfFig. 2sadg.

By adding recurrence, the dynamic range is further im-
proved by two orders of magnitude in strengths0.12,St=0

,100d and by a factor of 2 in variancesst=0,120d as shown
in Fig. 2sad. Shown in Figs. 2sbd–2sfd are trajectories for
representative stimuli from the regions in Fig. 2sad in which
the non-RNN fails, but the recurrently reconnected network
achieves perfect categorization after timetr. Again, note that
t=1 corresponds to the non-RNN case.

Figure 2sbd shows that the state with high variance is
correctly classified—i.e., converges to the stateC1 with the
correct mean aftertr =13. The non-RNN fails to classify cor-
rectly as its outputxt=1 is dissimilar to C1. Likewise, an
initially strong signalfS=50, Fig. 2scdg or weak signalfS
=0.5, Fig. 2sddg achieves recovery attr =3 andtr =5.

When zero stimulus is presented to the RNNfFig. 2sedg,
the network reaches a limit cycle in which it alternates be-
tweenxt>0 and a uniform statext>0.5 with the constant
0.5 traceable from Eq.s1d f15g. This is also the case for the
evolution of very weak signalsSt=0,0.12 fFig. 2sfdg, result-
ing in classification failure. Hence,St=0,0.12 defines our set
of subthreshold stimuli. It is in this region that we demon-
strate the “stochastic-resonance-like” behavior of our system
in the presence of noise.

B. Interplay of recurrence and noise

We first look at the dynamics of the RNN in the presence
of pure noisesstimulus strengthSt=0=0d. Uniform white
noise sUWNd of width a and zero mean was added to the
state xt at each time step, starting att=0 f16g. In a real
biological network such noise can correspond, e.g., to the
spontaneous activity in the input neurons or to synaptic
noise. The most probable responsef17g of the network to
pure noise can be classified as follows. For weak noisefa
ø0.16, Fig. 3sadg, the RNN evolution resembles the limit
cycle dynamics obtained for zero noise and subthreshold
stimulus. For moderate noisef0.16,aø0.29, Fig. 3sbdg, the
system has a tendency to be permanently trapped in one of
the memory statesfC2 in case of Fig. 3sbdg. For strong noise
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fa.0.29, Fig. 3scdg, xt is trapped in the memory statesCi

transiently and visits all of them at random.
We now discuss three phenomena exhibited by the net-

work categorizing in the presence of noise when recurrence
is imposed:s1d enhanced robustness to noise,s2d uniformity
of success rate throughout the dynamic range, ands3d noise-
mediated categorization.

1. Enhanced robustness to noise

To evaluate the performance of the network in the pres-
ence of noise, we define the success rateSrate as the fraction
of runs starting with a given stimulus that resulted in com-
plete convergence to the correct memory state.sIn the pres-
ence of noise, the Linfoot criteria are evaluated on the output
xt of the network, before noise is added.d Figure 4 shows

Srate for the non-RNNfFig. 4sadg and RNNfFig. 4sbdg as a
function of noise strengtha. At signal strength 0.2øSt=0

ø50, the near-perfect performance of the RNN is robust
against noise up toa.0.4 fFig. 4sbdg. In contrast, for the
non-RNN,Srate decays with increasinga and reaches nearly
0 at a=0.4 for St=0,0.5 fFig. 4sadg.

For a.0.4 and 0.5,St=0,2, it appears at first that the
non-RNN is more robust against noise than the RNN. This is
no longer the case, however, if we require the non-RNN to
satisfy the Linfoot criteria for 80 successive runs with iden-
tical stimulussi.e., a criterion comparable to the one used for
the RNNd. At a<0.11,Srate then abruptly becomes zerosfig-
ure not shownd for the non-RNN.

Without recurrence, even in the absence of noise, the non-
RNN fails whenSt=0,0.6 orSt=0.2.0. The non-RNN there-
fore has a dynamic rangesDRd of less than one decade, with

FIG. 2. Response of the recurrently reconnected network to stimulus in the absence of noise. sad The region under the solid curve
represents the dynamic range where the RNNsouter solid lined and non-RNNsinner solid lined can operate perfectly foruXt=0−Xiuø2. The
non-RNN network was trained to classify in the smaller region represented by the solid rectangle. Also shown is the dynamic range of the
Hopfield networksdotted curve; see Sec. III Dd. Note that the scale for stimulus strengthSt=0 is logarithmic.sbd–sfd Dynamics of the RNN
starting with input states that are representative of the regions defined insad: sbd Highly dispersed stimulus:st=0=65.0, Xt=0=9.0, St=0

=1.0. scd Strong stimulus:st=0=20.0,Xt=0=9.0,St=0=50.0.sdd Weak stimulus:st=0=2.0,Xt=0=7.0,St=0=0.5. sed No stimulusSt=0=0.0. sfd
Very weak stimulus:st=0=2.0, Xt=0=7.0, St=0=0.1. Note thatt=1 corresponds to the non-RNN case.
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low robustness against noise. In contrast, RNN possesses a
DR of over two decades inSt=0 s0.12–85.0d and is robust up
to noise strengtha<0.4 independent ofSt=0.

2. Uniformity of success rate throughout dynamic range

The success rate of the RNN is approximately uniform
throughout its dynamic range:Srate.1 for a,0.4 andSrate
.0 for a.0.5, independently of signal strengthSt=0 fFig.
4sbdg. To verify that this result is not a consequence of the

strict condition we imposed onSrate, we lowered bothTCFQ

sdown toTCFQ=1, only evaluated att=1000d and Linfoot’s
tolerancesup to 20% variation ofC, F, Q from 1.0d. We
obtained curves that are similar to Fig. 4sbd except that at
higher noise strengthssa.0.5d, Srate saturates at a nonzero
values0.2 forTCFQ=1 and 20% toleranced. The nonzero suc-
ess rate at high noise strength originates from the transient
stypically fewer than ten iterationsd trapping of the system in
one of the incorrect memory statesCi fFig. 3sedg—the rea-

FIG. 3. Typical recurrently reconnected net-
work dynamics for zero stimulusand sad weak
noise sa=0.14d, sbd moderate noisesa=0.22d,
and scd strong noisesa=0.50d. The outputxt of
the networksbefore noise is addedd is shown for
tù1; for t=0, x0 plus UWN is shown.
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son why we setTCFQ to a relatively high values=80d in Fig.
4sbd. The correspondingSrate<0.2 is lower than 1/3 as in
the presence of noise of high strength the network state is not
always close to one of theCi.

3. Noise-mediated categorization

In the absence of noise, the RNN fails to respond to
stimuli of strengthSt=0,0.12 fi.e., it evolves as if no stimu-
lus is presented, Figs. 2sed and 2sfdg. When noise is added,
however, such subthreshold stimuli can be classified cor-
rectly. This is clearly seen forSt=0=0.1 in Fig. 4sbd, and
St=0,0.12 in Fig. 5sad. The shape of theSratesad curves is
reminiscent of stochastic resonancef1,3,4g: the highestSrate
is obtained at a nonzero optimal noise strengthaopt. The
averageSrate for signals of strengthSt=0=0.1 reaches 60% at
aopt<0.24. BelowSt=0=0.12, the optimalSrate decays lin-
early with St=0, reaching 30% atSt=0=0. The 30%<1/3
level reflects the long-term trapping of the network in a ran-
domly selected memory statefFig. 3sbdg when a falls into
the moderate noise range.Srate=1/3 therefore represents the
base line to which the gain inSrate should be compared. Still,
adding noise at strengthaopt increasesSrate by up to 100%
sfrom 30% to 60%d.

FIG. 4. Success rate of (a) nonrecurrent, (b) recurrently recon-
nected, and (c) Hopfield networks in the presence of noise. Average
Srate is shown as a function of noise strengtha at the indicated
stimuli strengthsSt=0. In sad and sbd, Srate is averaged over stimuli
with st=0=2 andXt=0 in the rangeXi −2øXt=0øXi +2 sresolution
of Xt=0=1.0d, with 50 runs performed for eachXt=0. In scd, all
curves except 0.7A and 0.7B were averaged over stimuli with
st=0=4 and withXt=0 as insad andsbd. The curve 0.7A showsSrate

for stimuli with strengthS=0.7 and “correct” meanXt=0=Xi, while
the curve 0.7B shows the average overXt=0=Xi ±2 andXi ±1. Here
1000 runs were performed for each stimulus inscd.

FIG. 5. sColor onlined Noise-mediated categorization of weak
stimuli by the recurrently reconnected network. sad Success rate of
the RNN averaged over stimuli withXi −3,Xt=0,Xi +3. sbd Suc-
cess rate of the RNN in the absencessd and presences* d of noise
with strengtha=0.24. In all casesst=0=2.0. Linfoot’s criteria are
evaluated with aTCFQ=10 from t=991 tot=1000 and averaging is
done over 50 runs for each stimulus.
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The addition of noise also improves the classification of
signalssof arbitrary strengthd that were not included in the
training set of the NNs“noise-mediated extrapolation”d. This
is apparent in Fig. 5sbd for signals withXt=0.10 or Xt=0

.16 sin the region of strong overlap between two of the
statesCid andXt=0,4 or Xt=0.22 snear the system bound-
aryd.

C. RNN viewed as a dynamical system

The recurrently reconnected network implements a dis-
crete dynamical system that mapsxt into xt+1 through:xt+1

=Gsxtd, where the mapping functionG is given by Eq.s1d.
By construction, the three target statesCi are fixed points

of the map. Note that the statex=0 is not a fixed point. To
evaluate the stability ofCi, we examine the eigenvaluesl of
the Jacobian matrixV of the systemf18g. Figure 6sad shows
that the largest modulus ofl is <0.21; asulku,1 for all k,
Ci are stable fixed pointsf19g.

The trajectoriesxt for the noiseless case are visualized in
Fig. 6sbd, where the three axessd1,d2,d3d are the vector
projections ofxt on the three target statesCi, in the units of
uCiu fi.e., di =sCi ·xtd / uCiu2g. The trajectories form four clus-
ters, three of which converge to one ofCi, and the fourth
cluster consists of a thin regionswith thicknessDd<0.24d
oriented along the diagonal directionsfsee Fig. 6sbdg. In the
latter region, xt asymptotically alternates between

sd1,d2,d3d=s0.00,0.00,0.00d ands0.68, 0.69, 0.68d. The at-
tractor of this region, which includes the zero-stimulus tra-
jectory, is thus a limit cycle of period 2.

We are now in a position to understand the results of Sec.
III B in terms of the flow represented in Fig. 6sbd. The
weaker the stimulus strengthSt=0, the higher is the percent-
age of stimuli of this strength that become trapped in the
limit cycle attractor, rather than converging to one of the
desired fixed pointsCi; with no noise, all states withSt=0

,0.1 become trapped. In the presence of noise, the trajectory
can switch in between the basins of attraction of the zero-
noise system. When the noise strengtha becomes compa-
rable to the thicknessDd<0.24, the trajectories starting in
the undesired basin are likely to escape from it. If noise is
too strongsa.0.29d, the trajectory is unlikely to become
permanently trapped in the vicinity of one of the target
states, and instead hops randomly between the corresponding
basins of attractionfsee also Fig. 3scdg. The existence of the
optimal value of noise strengthaopt is then seen to be a
compromise maximizing the chance of getting out of the
undesired basin and subsequently not escaping the desired
basin.

D. Comparison to a Hopfield network

The arguments of the previous section are quite general
and raise the question of whether the effects discussed by us
are a generic feature of recurrent networks. In this section,
we describe a simple associative memory network that fails
to exhibit the enhancement of performance by noise which
we demonstrated in the two-layer recurrently reconnected
network. As described in Appendix B, we constructed a
Hopfield network with three target statesHCq of meansX1

=7, X2=13, andX3=19. The states are defined byhHCk
q=1j

for k=Xq±2,Xq±1,Xq andhHCk
q=−1j for all otherk sk being

the index of each neurond. We then evaluated the perfor-
mance of the network for the set of input states defined by

xk =

2SexpS− fk − Xg2

2s
D

ss/4d1/2 − 1. s2d

Note that when the sgn function is applied to the input states
with S=1, s=4 andX=Xq, one obtains the target statesHCq.
Other input states are considered to be correctly classified if
the network evolves to the target state with closest mean.

We first discuss the dynamics in the absence of noise. The
input statehxk=−1j scorresponding toSt=0=0d represents the
zero stimulus and does not evolve, asxt=−1 is a fixed point
of the map. The set of subthreshold stimuli is defined as
those that converge to the fixed pointhxk=−1j after one it-
eration. The dynamic range of the networkswithin which
perfect classification is achievedd is indicated in Fig. 2sad.
Note that the dynamic range inSt=0 is two orders of magni-
tude narrower compared to the range of the two-layer RNN.

The success rateSrate of the Hopfield network in the pres-
ence of noise is plotted in Fig. 4scd. In contrast to the RNN
casefFig. 4sbdg, the success rate is not uniform as a function
of signal strength. Within most of its narrow dynamic range,

FIG. 6. sColor onlined Attractors of the recurrently reconnected
network and their stability. sad Eigenvalue spectrum at the three
memory statesC1 snd, C2 shd, andC3 sqd. sbd Flow diagram of
the RNN. Shown are the projectionsdi of the statext on the
memory statesCi. Included are trajectories for stimuli from the set
0.0øSt=0ø2.0, 1.0øXt=0ø25.0, 1.0øst=0ø25.0. Inset: the “ve-
locity vector” dt+1−dt with vector origin defined bydt. The velocity
at xt=0=0 has a strong magnitude and moves the system to the flat
statext with sd1=0.68,d2=0.69,d3=0.68d. The magnitude of the
velocities is scaled to 0.2 of its original strength.
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the Hopfield network is more robust than the RNN.
For large enough noise strengtha, the success rate of the

Hopfield network does become nonzerofFig. 4scdg even for
subthreshold stimulisSt=0ø0.6d. However, Srate never ex-
ceeds 1/3—i.e., the success rate that corresponds to classifi-
cation performed at random. Therefore the implemented
Hopfield network does not show noise-mediated categoriza-
tion.

This illustrates that the conditions necessary for noise-
mediated detection of subthreshold stimuli will not always
be met in recurrent neural networks. The failure of the
Hopfield network to benefit from noise can be understood
using arguments similar to those of Sec. III C. Compared to
the RNN case, the size of the basin of attraction for the
zero-stimulus fixed pointhxk=−1j is larger, both in absolute
terms and relative to the size of basins of attraction for the
memory statesHCq f20g. In addition, the dynamics is
strongly influenced by the spurious fixed points
sgns±HC1± HC2± HC3d. When designing a neural network
capable of noise-mediated categorization, particular care
should be given to the minimization of the basins of attrac-
tion of unwanted attractors.

IV. RELATED IDEAS AND CONCLUSION

We first briefly discuss our results in the context of bio-
logical neural systems. Consider a recurrent neural network
that processes spatially encoded sensory information—for
example, the olfactory bulb networkf21g. The input to the
network is generated by sensory neurons at the periphery
sthe olfactory epitheliumd. Even in the absence of sensory
stimulus, many sensory neurons have high levels of sponta-
neous activitysup to 100 spikes/sec in typical vertebrate ol-
factory sensory neuronsf22gd. Following the presentation of
a brief sensory stimulus, the sensory neurons provide a tran-
sient, spatially encoded input to the networkf23g. If the in-
terval between successive presentations of stimuli allows
sufficient time for the network to evolve recurrentlyf24g, the
output from the network will show the noise-mediated fea-
tures discussed above. Spontaneous activity in the sensory
neurons can in this context be viewed as a necessary part of
a biological mechanism that optimizes the detection of weak
stimuli by the system.

Identification and discrimination of odors can be viewed
as a categorization task performed by the olfactory system.
Psychophysical studies show that the perceived quality of an
odor is typically invariant to odor concentration over two
orders of magnitudef25g. Recently, Brody and Hopfield pro-
posed a phenomenological model based on many-are-equal
operations, designed in part to explain this invariancef26g.
Our results show that in the presence of noise such a feature
can emerge also by allowing simple recurrence.

In summary, we presented a detailed case study designed
to investigate the interplay of recurrence and noise in neural
networks. We showed that in the presence of noise, the in-
troduction of recurrence extends and homogenizes the oper-
ating range of a two-layer neural network trained to catego-
rize spatial patterns of neural activity. In particular, we
demonstrated that subthreshold signals can be correctly clas-

sified by the recurrent network when noise of magnitude
exceeding the signal strength is introduced in the network
dynamics. We also gave an example of a simpler recurrent
network of the Hopfield type where noise-mediated catego-
rization fails. We gave an intuitive explanation of the differ-
ence between these two cases based on the fixed point struc-
ture of the two systems. A more systematic understanding of
how recurrent neural networks should be designed to be ca-
pable of efficient noise-mediated signal processing remains
an interesting subject for further study.
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APPENDIX A: TRAINING PROCEDURE FOR THE
RECURRENTLY RECONNECTED NETWORK

The synaptic weightshwijkj andhv jkj were initialized ran-
domly within f−1/x ,1 /xg where x is the number of free
parameters connected to the weightssx=JN and x=J, re-
spectively, forhwijkj and hv jkjd f11,27g. The activation func-
tions for the input, hidden, and output nodes aref Isxd=x,
fHsxd=1.7159 tanhs2.0x/3.0d, and f0sxd=1/f1+exps−xdg, re-
spectively. The threshold functionfH is chosen so as to allow
faster convergence and better memory representation
f11,27,28g. The linear functionf I in this strainingd stage is
chosen so that the network can be wrapped in the nextsre-
currentd stage as depicted in Fig. 1sbd, hence eventually pro-
ducing a network withNs1+Jd purely TN’s.

Fixation of the desired memory stateC for an initial pro-
file xt=0 is attained through gradient descent by updating the
weights according to

wijk
t+1 = wijk

t + h
]Ek

]wijk
+ gDwijk

t−1, sA1d

where Ek=sCk−Fkd2/2 is the cost function andgDwijk
t−1

=gswijk
t−2−wijk

t−1d is the momentum termf11,27g. The learning
shd and momentumsgd rates are adaptively varied within
f10−5ø sh ,gdø10−1g to account for the variation of the error
surface along different regions of weight dimensionf29g.
These rules enhance the minimization ofEk, preventing un-
necessary oscillations in the search spacef11,27–29g. A simi-
lar update rule is implemented forvi j .

APPENDIX B: IMPLEMENTATION OF THE HOPFIELD
NETWORK

The one-layer, recurrent, associative memory network of
the Hopfield type was designed to perform a classification
task similar to that for which we trained the network of
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Appendix A. The desired memory statesHCq were chosen to
be the discretized version of the Gaussian profiles that were
used as memory states of the RNN:

HCk
q = sgn12SexpS− fk − Xqg2

2s
D

ss/4d1/2 − 12 , sB1d

wheres=4, andS=1. The meanssXqd that characterize the
three memory states areX1=7, X2=13, andX3=19—in exact
correspondence to those in Appendix A.

The synaptic weightswijd that connects theith neuron to
the j th neuron is fixed using the Hebbian rulef11,28g

wji = wji = 5 1

N
o
q=1

3

sHCi
qdsHC j

qd , j Þ i ,

0, j = i .
6 sB2d

The state of the networkxt evolves recurrently according to
the map

xj
t+1 = sgnSo

i=1

25

wjixi
tD, j = 1,2, . . . ,25. sB3d

The update ofxt is done asynchronously; i.e., the element
j is chosen randomly and one at a time.
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