PHYSICAL REVIEW E 71, 036134(2005

Noise-enhanced categorization in a recurrently reconnected neural network
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We investigate the interplay of recurrence and noise in neural networks trained to categorize spatial patterns
of neural activity. We develop the following procedure to demonstrate how, in the presence of noise, the
introduction of recurrence permits to significantly extend and homogenize the operating range of a feed-
forward neural network. We first train a two-level perceptron in the absence of noise. Following training, we
identify the input and output units of the feed-forward network, and thus convert it into a two-layer recurrent
network. We show that the performance of the reconnected network has features reminiscent of nondynamic
stochastic resonance: the addition of noise enables the network to correctly categorize stimuli of subthreshold
strength, with optimal noise magnitude significantly exceeding the stimulus strength. We characterize the
dynamics leading to this effect and contrast it to the behavior of a more simple associative memory network in
which noise-mediated categorization fails.
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I. INTRODUCTION lus magnitude, in a manner reminiscent of SR or noise dith-

o ) ) . ering[6,7]. The performance of the network thus provides an
The role of noise in neural processing has received siggyample of noise-mediated signal processing in a spatially

nificant attgntion in recent years, particularly in the CP”teXtextended system. To investigate how general our findings
of stochastic resonandSR) [1-3]. In the SR mechanism, 516 e also discuss a Hopfield network that performs a simi-

noise is used in a counterintuitive way to permit detection Ofiy classification task, but fails to benefit from noise. We give
subthreshold signals of a particular frequency by a thresholdy, jnyitive understanding of the difference between the two

ing neuron(TN). Recently, such noise-driven frequency de-cases based on the attractor structure of the networks.
tection was demonstrated also in a network of TN

In the case of SR, information is encoded in the temporal
structure of the stimulus. This is in contrast to “spatial” en-
coding, in which the stimulus is mapped into the pattern of
activity across a set of neurons at a specific time. As opposed

trgéhif Cr?osizeornfr:q:t?;fy'sgggg;r?g :y:,zgm: htgs rt])gtn ifé(;' N) to model the task of spatial categorization. The map-
b y 9 sy ping of the N inputs {x;;i=1,2,... N} to the N outputs

modeled extensively. The previous studi$ have concen- S . . .
trated on the case of recurrent networks and of weak stimuﬁq)"’k_l'z’ - N} as mediated by hidden nodes per input

that are periodic or constant in time. is defined by the expression
In this article, we contrast the cases of feed-forward and
recurrent networks performing categorization of transient
spatially encoded stimuli. We first train a feed-forward net- x
work to recognize a set of Gaussian-distributed profiles of >
unit strength. We then evaluate the performance of the net_,
work for stimuli of arbitrary strength and in the presence of
noise. For stimuli below a certain strength, the feed-forward
network fails to classify correctly, independently of the mag-
nitude of noise. To obtain enhancement of performance by
noise, we reconnect the feed-forward network into a recur-— Q
rent network(Fig. 1). We present the stimulus at the initial ™
time step and let the network evolve to its attractor state
before the performance is evaluated. The recurrently recon.  fi fu fo f fu
nected networKRNN) has a high success rate of classifica- (a) (b}
tion of subthreshold stimuli provided that noise of suitable )
magnitude is added during the network dynamics. The opti- FIG. 1. Network architecture(a) Three-layer fully connected
mal noise magnitude is several times higher than the stimJ&ed-forward network wheref,(x)=x, f,;(x)=1.7159 tantex/3),
and fa(x)=1/[1+exd-x)]. (b) The collapsed two-layer recurent
network, now with each node acting as a thresholding neuron.
The thresholding function is chosen to Wé&x)=f,(fo(x))=21/[1
*Electronic address: chris@mpipks-dresden.mpg.de +exp-x)] for the input layer and remains fy(x)
"Electronic address: martinz@mpipks-dresden.mpg.de =1.7159 tant2x/3) for the hidden layer.

IIl. MODEL OF CATEGORIZING NETWORK

We use a standard three-layer feedforward neural network

Wiy

1539-3755/2005/18)/0361349)/$23.00 036134-1 ©2005 The American Physical Society



C. MONTEROLA AND M. ZAPOTOCKY PHYSICAL REVIEW E71, 036134(2005

J N given target state wheg, F, and Q are within 5% of 1
Oy = fo<2 Y,—kvjk>, Y= fH(Z f,(xi)wijk> ., (1) (under such a conditiod' is visually indistinguishable from
j=1 i=1 xY).

To evaluate convergence to a target state in the case of the
RNN, C, F, andQ are measured in 80 successive time steps
(Tcro=80, from t=921 to t=1000. We consider conver-
gence to be complete only if the matching criterion is satis-
fied at each time step in this range. The extensiofidg,
>1 assures that the recovery measure is robust against tran-
sients(temporary trappings in the target state the pres-

—[k=X]J? ence of noise. For the non-RNN casgrq=1 as conver-
X = Sex —2 (mo)*?,
g

where{w;, } and{v;} are the weights that are fixed using the
standard gradient-descent meth(ske Appendix A The
hidden (f,) and output(fy) nodes have thresholded activa-
tion functions while the inputf,) nodes have linear activa-
tion functions.

During training, we feed inputs of form

gence is evaluated at™.

i.e., Gaussian profiles with strengtf), mean(X), and vari- A. Network in the absence of noise
ance(o). Learning was achieved by updating the weights so

that these inputs are mapped into one of the three desirerget';\?glﬁ(wég% %;it:pgﬁ;]: Ofertfggm%}:]ﬁg]o% ngg;?&i"ﬁ_]t
memory states(W!, w2 W3). These were chosen to be 9 b y P

. . o . . puts. Generalization by interpolation of resolutions smaller
(_Sius?gnbproﬂles' with 'deQE'EE;l ;;ur_e;gt;giagd variarige than the training resolutions is achieved perfectly within the
B ,) _Ut varying m.ear( =7,X°=13 X°= 9)', . training range. Furthermore, extrapolation to include the

Spatial information is assumed to be contained in theranges 0.6 S9< 2 ando'=0< 60 is also attainefFig. 2(a)].
mean of the input state=C. The state to evolve to among the By adding recurrence, the dynamic range is further im-
W' is therefore chosen to be the one with the closest mean Yroved by two orders of magnitude in strength12< S=°
the W' with smallerX' in the special case of equal distance. <100 and by a factor of 2 in variande'=°< 120) as shown

The set Of. training states was .defi.ned_ by th?_(l:olloyvingin Fig. 2@. Shown in Figs. &)-2(f) are trajectories for
12X 10° possible parameter combinationg:=2<X"<X representative stimuli from the regions in FigaRin which

H H t=0— 3 t=0
{Azoiz((‘,"ft{‘ sitfgs)s'zedgio__lzdoflfhlq ), tO.?Sta f;f;g’ the non-RNN fails, but the recurrently reconnected network
| e f Hag . ;j T -;‘ I'Tlpg S ies V(‘j” achieves perfect categorization after titneAgain, note that
equal to one of the desired meaXswill be referred to as  _4 corresponds to the non-RNN case.

sta'tés with_“(_:orrect” meanh. red 1o the i q Figure 2b) shows that the state with high variance is
ter training, {v} are then rewired to the input nodes as . ectly classified—i.e., converges to the stitkwith the

depicted in Fig. th). The resulting recurrently RNN is NoW ¢ rect mean aftetr =13. The non-RNN fails to classify cor-
composed oN(1+J) purely thresholding TN's. The RNNis ¢ty as its outpux®=! is dissimilar toW?. Likewise, an
initiated with an input profilex™ and then evolves recur- initially strong signal[S=50, Fig. 2c)] or weak signallS
rently, with outputd®' at stept becoming the input™**atstep - 5 Fig. 2d)] achieves recovery at=3 andt, =5.

t+1. Note that the state of the RNN after one iterati?, When zero stimulus is presented to the ém 20)],

is equivalent to the output of the corresponding nonrecurrenfye network reaches a limit cycle in which it alternates be-
network [non-RNN, Fig. 1a)]. Throughout the discussion, qyeenxi=0 and a uniform state'=0.5 with the constant
we use a network wittN=25 input neurons andiBhidden ¢ 5 traceable from Eq1) [15]. This is also the case for the
neurong8]. , , . _ evolution of very weak signal§=°< 0.12[Fig. 2(f)], result-

~ The results discussed belde., noise-mediated catego- g in classification failure. Henc&=0< 0.12 defines our set
rization and uniformity of success ratare obtained also in  4f sybthreshold stimuli. It is in this region that we demon-
the network in which the thresholding functiohandfy are  girate the “stochastic-resonance-like” behavior of our system
both chosen to be f1+exg—x)] or 1.7159 tant2x/3) in the presence of noise.

[10]. The “mixed” choice f=1/[1+exg-x)] and fy
=1.7159 tanf2x/3) results in fast convergence during train-

ing and directly corresponds to the standard implementation ) ) ,
of the two-layer perceptrofl.0,11]. We first look at the dynamics of the RNN in the presence

of pure noise(stimulus strengthS™=0). Uniform white
noise (UWN) of width « and zero mean was added to the
IIl. RESULTS AND DISCUSSION s;atex_t at each time step,.starting &8t0 [16]. In a real
_ biological network such noise can correspond, e.g., to the
The similarity ofx' to the target stat&l' was evaluated spontaneous activity in the input neurons or to synaptic
using Linfoot's measures of structural conté), fidelity — noise. The most probable resporidd] of the network to
(F), and correlation qualityQ) [12]. C provides a measure pure noise can be classified as follows. For weak npise
of relative sharpness of the two statEsneasures their gen- <0.16, Fig. 3a)], the RNN evolution resembles the limit
eral similarity and is just the mean square error subtractedycle dynamics obtained for zero noise and subthreshold
from 1, andQ quantifies the alignment of their peaks. The stimulus. For moderate noi$8.16< «<0.29, Fig. 3b)], the
two states are identical whed=F=Q=1. In the following, system has a tendency to be permanently trapped in one of
we declare that the current state of the network matches the memory stateg¥? in case of Fig. &)]. For strong noise

B. Interplay of recurrence and noise
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FIG. 2. Response of the recurrently reconnected network to stimulus in the absence of(aoilee region under the solid curve
represents the dynamic range where the RNiter solid ling and non-RNN(inner solid ling can operate perfectly fgk=0-X/|<2. The
non-RNN network was trained to classify in the smaller region represented by the solid rectangle. Also shown is the dynamic range of the
Hopfield network(dotted curve; see Sec. lIl)DNote that the scale for stimulus stren@fC is logarithmic.(b)—(f) Dynamics of the RNN
starting with input states that are representative of the regions definel: itb) Highly dispersed stimuluso'==65.0, X=0=9.0, $70
=1.0.(c) Strong stimulusp=0=20.0,X=°=9.0, S7°=50.0.(d) Weak stimuluso'=°=2.0, X09=7.0,57°=0.5. (¢) No stimulusS~°=0.0. ()
Very weak stimuluspt™0=2.0, X®*0=7.0,S7°=0.1. Note that=1 corresponds to the non-RNN case.

[a>0.29, Fig. 3c)], x' is trapped in the memory statals' Sate for the non-RNN[Fig. 4@] and RNN[Fig. 4(b)] as a
transiently and visits all of them at random. function of noise strengthy. At signal strength 0.& S

We now discuss three phenomena exhibited by the net=50, the near-perfect performance of the RNN is robust
work categorizing in the presence of noise when recurrencagainst noise up tec=0.4 [Fig. 4(b)]. In contrast, for the
is imposed:(1) enhanced robustness to noi&®), uniformity ~ NON-RNN, S decays with increasing and reaches nearly

of success rate throughout the dynamic range, (@hdoise- 0 ata=0.4 for S7<0.5[Fig. 4@)]. _
mediated categorization. For a>0.4 and 0.5<S70< 2, it appears at first that the

non-RNN is more robust against noise than the RNN. This is

no longer the case, however, if we require the non-RNN to

satisfy the Linfoot criteria for 80 successive runs with iden-
To evaluate the performance of the network in the prestical stimulus(i.e., a criterion comparable to the one used for

ence of noise, we define the success g as the fraction the RNN. At @=0.11,S. then abruptly becomes ze(fig-

of runs starting with a given stimulus that resulted in com-ure not showifor the non-RNN.

plete convergence to the correct memory stdtethe pres- Without recurrence, even in the absence of noise, the non-

ence of noise, the Linfoot criteria are evaluated on the outpuRNN fails whenS=°< 0.6 orS=°>2.0. The non-RNN there-

x' of the network, before noise is addedrigure 4 shows fore has a dynamic rangd®R) of less than one decade, with

1. Enhanced robustness to noise
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FIG. 3. Typical recurrently reconnected net-
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low robustness against noise. In contrast, RNN possessesstict condition we imposed 08, ;e

(down to Tere=1, only evaluated at=1000 and Linfoot’s

0(0.12—85.0 and is robust up
=0

to noise strengtlv~ 0.4 independent of

DR of over two decades i

Q from 1.0. We
obtained curves that are similar to Figb# except that at
higher noise strengthgy>0.5)

tolerance(up to 20% variation ofC, F
The success rate of the RNN is approximately uniformvalue(0.2 for Tceg=1 and 20% tolerangeThe nonzero suc-

Sate Saturates at a nonzero

ess rate at high noise strength originates from the transient
(typically fewer than ten iterationsrapping of the system in

2. Uniformity of success rate throughout dynamic range

throughout its dynamic rang& =1 for «<0.4 andSe

0 for @>0.5, independently of signal streng®r [Fig. !
4(b)]. To verify that this result is not a consequence of theone of the incorrect memory statd$' [Fig. 3e)]—the rea-
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mg FIG. 5. (Color online Noise-mediated categorization of weak

04 stimuli by the recurrently reconnected netwof#) Success rate of

the RNN averaged over stimuli withi —3<X=0< X +3. (b) Suc-

0.2 - | YERY: cess rate of the RNN in the abser(c_i@) and presencé) of noise

= /]—’J"’jﬁ’_ with strengtha=0.24. In all cases=°=2.0. Linfoot’s criteria are
0 : 08 : . : evaluated with & cpg=10 fromt=991 tot=1000 and averaging is

0 05 | 15 5 done over 50 runs for each stimulus.

3. Noise-mediated categorization
FIG. 4. Success rate of (a) nonrecurrent, (b) recurrently recon-

nected, and (c) Hopfield networks in the presence of ndiserage /In the absence of noise, the RNN fails to respond to
Sue iS Shown as a function of noise strengthat the indicated  Stimuli of strengthS=°< 0.12(i.e., it evolves as if no stimu-
stimuli strengthsS™. In (@) and (b), S.e is averaged over stimuli  1US is presented, Figs(@ and 2f)]. When noise is added,
with ¢%=0=2 and X0 in the rangeXi -2<X=0<Xi+2 (resoluton ~ however, such subthreshold stimuli can be classified cor-
of X#9=1.0), with 50 runs performed for eack=. In (c), all  rectly. This is clearly seen fo8~°=0.1 in Fig. 4b), and
curves except OA and 0.B were averaged over stimuli with S7°<0.12 in Fig. %a). The shape of th& (@) curves is
0**%=4 and withX*0 as in(a) and(b). The curve 0.A showsS.  reminiscent of stochastic resonaride3,4): the highestS.
for stimuli with strengthS=0.7 and “correct” meaiX'=°=X/, while is obtained at a nonzero optimal noise StrenQUBt- The
the curve 0.B shows the average ovf0=X+2 andXix1. Here averageS,, for signals of Strengtls{:oz 0.1 reaches 60% at
1000 runs were performed for each stimulugadh aop=0.24. BelowS™0=0.12, the optimalS,, decays lin-
early with S§7°, reaching 30% aS™=0. The 30%=~1/3
level reflects the long-term trapping of the network in a ran-
son why we seTcrq to a relatively high valug=80) in Fig. ~ domly selected memory staj€ig. 3(b)] when « falls into
4(b). The corresponding,...~0.2 is lower than 1/3 as in the moderate noise rang84,.=1/3 therefore represents the

the presence of noise of high strength the network state is n&asg line to which the gain i.ﬁate should he compared. Still,
always close to one of thw' adding noise at strengthy,,; increasesS by up to 100%

(from 30% to 60%.
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(d1,d2,d3)=(0.00,0.00,0.0pand(0.68, 0.69, 0.68 The at-
tractor of this region, which includes the zero-stimulus tra-
jectory, is thus a limit cycle of period 2.

We are now in a position to understand the results of Sec.
I B in terms of the flow represented in Fig.(t§. The
weaker the stimulus streng®, the higher is the percent-
age of stimuli of this strength that become trapped in the
limit cycle attractor, rather than converging to one of the
desired fixed pointdP': with no noise, all states witls™
< 0.1 become trapped. In the presence of noise, the trajectory
can switch in between the basins of attraction of the zero-
noise system. When the noise strengttbecomes compa-
rable to the thicknesad=0.24, the trajectories starting in
the undesired basin are likely to escape from it. If noise is
too strong(a>0.29), the trajectory is unlikely to become
permanently trapped in the vicinity of one of the target
states, and instead hops randomly between the corresponding
basins of attractiofisee also Fig. @)]. The existence of the
optimal value of noise strength, is then seen to be a
compromise maximizing the chance of getting out of the
undesired basin and subsequently not escaping the desired
basin.

FIG. 6. (Color onling Attractors of the recurrently reconnected
network and their stability(a) Eigenvalue spectrum at the three

memory statedl! (A), W2 (), and ¥ (O). (b) Flow diagram of D. Comparison to a Hopfield network

the RNN. Shown are the projectiort; of the statex' on the . . .

memory stated’. Included are trajectories for stimuli from the set 1€ arguments of the previous section are quite general
0.0=S9<20, 1.0=X9<25.0, 1.0<0™0<25.0. Inset: the “ve- and raise the question of whether the effects discussed by us

|ocity vector” dt‘*l—dt with vector origin defined bwt The Ve|ocity are a generic feature of recurrent networks. In this Section,

at xt¥0=0 has a strong magnitude and moves the system to the flaW€ describe a simple associative memory network that fails

statex! with (d;=0.68d,=0.69 d;=0.68. The magnitude of the to exhibit the enhancement of performance by noise which

velocities is scaled to 0.2 of its original strength. we demonstrated in the two-layer recurrently reconnected
network. As described in Appendix B, we constructed a

The addition of noise also improves the classification ofHOpf"jld networkswnh three target states“ of meacr:sx

signals(of arbitrary strengththat were not included in the =7, X°=13, andX®=19. ThHe sqtates are defined qu’k:.l}

training set of the NN“noise-mediated extrapolationThis ~ for k=X9£2,X3+1,X% and{"¥,:= -1} for all otherk (k being

is apparent in Fig. ®) for signals withX==10 or Xt=0  the index of each neurgnWe then evaluated the perfor-

=16 (|n the region of strong over|ap between two of the mance of the network for the set of input states defined by

statesW') andX¥°< 4 or X=0>22 (near the system bound- ~ [k= X2

ary). 2Sexp<—>

20
X =

-1 (2)
C. RNN viewed as a dynamical system (0/4)1/2

The recurrently reconnected network implements a disNote that when the sgn function is applied to the input states
crete dynamical system that mag'sinto x'** through:x'**  with S=1, o=4 andX=X9, one obtains the target statédsd.

=I'(x"), where the mapping functiohi is given by Eq.(1). Other input states are considered to be correctly classified if
By construction, the three target statsare fixed points the network evolves to the target state with closest mean.
of the map. Note that the state=0 is not a fixed point. To We first discuss the dynamics in the absence of noise. The

evaluate the stability o', we examine the eigenvaluasof  input state{x,=-1} (corresponding t&~°=0) represents the
the Jacobian matrig of the systenj18]. Figure Ga) shows zero stimulus and does not evolve,xds -1 is a fixed point
that the largest modulus of is =0.21; as|\,| <1 for all k, of the map. The set of subthreshold stimuli is defined as
W' are stable fixed pointsl9]. those that converge to the fixed poifxi=-1} after one it-
The trajectoriex' for the noiseless case are visualized ineration. The dynamic range of the netwafkithin which
Fig. 6(b), where the three axe@l;,d,,d;) are the vector perfect classification is achieveé indicated in Fig. 2a).
projections ofx' on the three target stat&', in the units of ~ Note that the dynamic range B is two orders of magni-
[Wi| [i.e.,d,=(W¥'-x"/|W?]. The trajectories form four clus- tude narrower compared to the range of the two-layer RNN.
ters, three of which converge to one ¥, and the fourth The success ratg ;. of the Hopfield network in the pres-
cluster consists of a thin regiofwith thicknessAd=0.24) ence of noise is plotted in Fig(@). In contrast to the RNN
oriented along the diagonal directiofsee Fig. @)]. In the  case[Fig. 4b)], the success rate is not uniform as a function
latter region, x! asymptotically alternates between of signal strength. Within most of its narrow dynamic range,
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the Hopfield network is more robust than the RNN. sified by the recurrent network when noise of magnitude
For large enough noise strengththe success rate of the exceeding the signal strength is introduced in the network

Hopfield network does become nonzéFag. 4(c)] even for  dynamics. We also gave an example of a simpler recurrent

subthreshold stimuliS™°<0.6). However, S, never ex- network of the Hopfield type where noise-mediated catego-

ceeds 1/3—i.e., the success rate that corresponds to classifization fails. We gave an intuitive explanation of the differ-

cation performed at random. Therefore the implementednce between these two cases based on the fixed point struc-

Hopfield network does not show noise-mediated categorizaure of the two systems. A more systematic understanding of

tion. how recurrent neural networks should be designed to be ca-
This illustrates that the conditions necessary for noisepable of efficient noise-mediated signal processing remains

mediated detection of subthreshold stimuli will not alwaysan interesting subject for further study.

be met in recurrent neural networks. The failure of the

Hopfield network to benefit from noise can be understood

using arguments similar to those of Sec. Il C. Compared to ACKNOWLEDGMENT

the RNN case, the size of the basin of attraction for the

zero-stimulus fixed poingx,=-1} is larger, both in absolute  \We thank Karsten Kruse for useful comments on the

terms and relative to the size of basins of attraction for thenanuscript.

memory states'¥9 [20]. In addition, the dynamics is

strongly influenced by the spurious fixed points

sgnx" W'+ " W2+ W), When designing a neural network  AppENDIX A: TRAINING PROCEDURE FOR THE

capable of noise-mediated categorization, particular care RECURRENTLY RECONNECTED NETWORK
should be given to the minimization of the basins of attrac-

tion of unwanted attractors. The synaptic weightéw;;} and{v;} were initialized ran-
domly within [-1/x,1/x] where x is the number of free
IV. RELATED IDEAS AND CONCLUSION parameters connected to the weiglits=JN and y=1J, re-

) ) . ) . spectively, fo{w;} and{vy}) [11,27. The activation func-
We first briefly discuss our results in the context of bio- tions for the input, hidden, and output nodes #@)=x
logical neural systems. Consider a recurrent neural network (x)=1.7159 tanfé.()</3.0) 7andf0(x)=1/[1+exp(—x)] re,-
that processes spatially encoded sensory |_nformat|on—fo pectively. The threshold functidr is chosen so as to allow
example,_ the olfactory bulb netwo1]. The input to th_e faster convergence and better memory representation
network is generated by sensory neurons at the pe“pherﬁil,27,28. The linear functionf; in this (training stage is

(the olfactory epithelium Even in the absence of sensory chosen so that the network can be wrapped in the (rext

stimulus, many sensory neurons have high levels of Spont‘%’urren) stage as depicted in Fig(H), hence eventually pro-

neous activity(up to 100 spikes/sec in typical vertebrate ol- ducing a network wittN(1+J) purely TN's
factory sensory neuron2]). Following the presentation of Fixation of the desired memory stade for an initial pro-

a brief sensory stimulus,_the Sensory neurons providg a trari'i'le x0 is attained through gradient descent by updating the
sient, spatially encoded input to the netwdag]. If the in- weights according to
S

terval between successive presentations of stimuli allow
sufficient time for the network to evolve recurrenfB4], the
output from the network will show the noise-mediated fea- JE
tures discussed above. Spontaneous activity in the sensory w}ﬁlzw}jk + =+ 'yAWitJ-—kl, (A1)
neurons can in this context be viewed as a necessary part of Miji
a biological mechanism that optimizes the detection of weak
stimuli by the system. _ . . 1

Identh}ilcationyand discrimination of odors can be viewed\'\/her?_zE"_t(_?k._q)")zl2 is the cost function andyAwy,
as a categorization task performed by the olfactory systeni: Y(Wix ~Wij) iS the momentum terrfil1,27. The learning
Psychophysical studies show that the perceived quality of af” ?”d momentuln(y) rates are adaptively varied within
odor is typically invariant to odor concentration over two [10 = (7,7)=10"] to account for the variation of the error
orders of magnitudg25]. Recently, Brody and Hopfield pro- Surface along different regions of weight dimensic®].
posed a phenomenological model based on many-are-equlifese rules enhance the minimizationkgf preventing un-
operations, designed in part to explain this invariaf@gl. ~ necessary oscillations in the search sfdde27-29. A simi-
Our results show that in the presence of noise such a featufdr update rule is implemented foy;.
can emerge also by allowing simple recurrence.

In summary, we presented a detailed case study designed
to investigate the interplay of recurrence and noise in neural APPENDIX B: IMPLEMENTATION OF THE HOPFIELD
networks. We showed that in the presence of noise, the in- NETWORK
troduction of recurrence extends and homogenizes the oper-
ating range of a two-layer neural network trained to catego- The one-layer, recurrent, associative memory network of
rize spatial patterns of neural activity. In particular, wethe Hopfield type was designed to perform a classification
demonstrated that subthreshold signals can be correctly clagask similar to that for which we trained the network of
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Appendix A. The desired memory staté®9 were chosen to

be the discretized version of the Gaussian profiles that were

used as memory states of the RNN:

ZSeX%M)
20

Hit=sg (o14) 12

-1/, (B1)

whereo=4, andS=1. The mean$XY) that characterize the

three memory states a¥=7, X?=13, andX3=19—in exact
correspondence to those in Appendix A.

The synaptic weightw;) that connects théh neuron to
the jth neuron is fixed using the Hebbian rudlEL,28

PHYSICAL REVIEW E71, 036134(2005

3

1 -
Wy =W = ngl (H\P?)(H\P?), b= (B2)

0, j=i.

The state of the network! evolves recurrently according to
the map

25
x}*lzsgV’(E WjiX})’ j=1,2,...,25. (B3)
i=1

The update ok' is done asynchronously; i.e., the element
j is chosen randomly and one at a time.
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